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A Sutvey of the Theory of Wire Grids*

TOVE LARSENTY

Summary—The paper gives a survey of the literature concerning
the electromagnetic properties of wire grids. As an introduction to
the literature survey, a short description of the properties and appli-
cations of wire grids is given. Finally some particular grid configura-
tions are mentioned.

I. INTRODUCTION

HIS SURVEY is written from an electromagnetic

point of view and all but a few papers concern-

ing optical grids have been omitted. The survey
does not claim to be complete. Papers, the contents of
which are known by the author only from summaries in
the Electrical Engineering Abstract or other abstracts
are marked with an asterisk.

A description of the properties and applications of
grids is given as an introduction to the literature survey.
This is followed by the survey, which is ordered chrono-
logically and divided into two parts: early papers, and
currently used papers from a later period. Finally is
given a description of some particular grid configura-
tions.

Most attention is paid to the theoretical papers deal-
ing with the simple grid with wires of circular cross sec-
tion. The formulas found by the various authors for the
reflection coefficient of such a gird are given and com-
pared. For the rest of the papers describing experi-
mental jnvestigations and examinations of grids with
noncircular wires and special grid configurations only
brief descriptions are given, as the results in most of
these cases cannot be stated briefly. The notation used
in the formulas is shown in Fig. 1. The time factor is
e~ and the Giorgi unit system is used.

II. PROPERTIES AND APPLICATIONS OF GRIDS

The grids which will be discussed in this paper may be
defined as plane metallic systems which have in one
direction a periodic structure with a period called the
grid constant, which may be of the same order of mag-
nitude as the wavelength of the incident field. The
material properties of the grid are constant in the direc-
tion of the wires. The influence of such a grid depends
primarily on the polarization of the incident wave and
of the ratio between the grid constant and the wave-
length. This dependence will be mentioned briefly in
what follows together with the definition of the quan-
tities commonly used to describe the properties of
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Fig. 1—-Plane grating with a plane wave at arbitrary incidence.

grids. Some applications of grids with a few references
to papers describing these applications are also briefly
mentioned.

A. Polarization

The zrid usually has the greatest influence when the
electric vector of the incident wave is polarized in the
direction of the wires. This is called the Hertz effect; in
certain cases, however, the grid may effect a wave
polarized perpendicular to the wires more severely than
a wave polarized parallel to the wires; this is called the
Dubois effect. The type of transmission that takes place
tor a given grid depends upon the ratio between the
wire diameter and the wavelength and upon the material
of which the grid is made.

In radio engineering the Hertz effect is of most in-
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terest. It was exactly this effect which Hertz [1] utilized
in 1889 in his experiments. Around the end of the cen-
tury there were several theoretical investigations deal-
ing with the electromagnetic fields near grids (see Sec-
tion IIT-A). Formulas for the reflection coefficient of a
grid were derived for both the case where the polariza-
tion of the incident wave is parallel and where the
polarization is transverse to the wires. It turned out
that usually the reflection coefficient was vanishingly
small when the polarization of the incident wave was
perpendicular to the wires. In fact, in most of the recent
work on the subject (see Section 1II-B) it is assumed
that a wave with a polarization perpendicular to the
wires of the grid passes the grid uninfluenced. In com-
puting the field around a grid one often expresses the
total field as the incident field as it would be if the grid
were not present plus a scattered field radiated from
the grid in both directions by a current in the wires of
the grid induced by the component of the field parallel to
the wires. The reflected wave in front of the grid is
identical with the scattered field, whereas the trans-
mitted wave behind the grid is equal to the sum of the
scattered field and the incident wave (assuming losses in
the grid are negligible). Since the scattered field can
have a polarization different from the polarization of the
primary field, it is possible to produce an elliptically
polarized field behind the grid. This fact can be exploited
in the construction of antenna systems for circularly or
elliptically polarized fields; such antennas have been
examined for example by Andreasen [2], who com-
puted the field reflected from two parallel grids being so
arranged that the wires of the first grid formed an angle
with the wires of the second grid, and by Aagesen [3],
who has investigated the field from a reflector consisting
of a grid placed parallel to a metal sheet.

B. Diffraction Pattern

A qualitative description of the diffraction pattern
around a grid may easily be given for an electro-
magnetic as well as for an optical transmission grating,
the simple mechanism being that the periodic elements
of the grid (current-carryving wires or slits with light)
radiate elementary cylindrical waves in all directions.
The phase of these radiated secondary waves will in-
crease from one wire or slit to the next with the amount
kod sin 6, where ko =2m/\ is the propagation constant of
the incident wave, d the grid constant and 6 the angle of
incidence of the primary field (this field is assumed not
to change in the direction along the wires or slits,
¢=0°). The secondary waves will arrive with the same
phase to planes, the normals of which form the angle
Y. with the positive normal to the grid, where Y, is de-

termined from (see Fig. 2)
dsinf — dsiny, = n\, n=20+1,+£2---, (1)

By the positive normal to the grid we understand the
normal pointing from the front to the back side of the
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Fig. 2—Diffraction pattern around a grid, side waves are shown
for >0 only. The symmetrical waves are present for z<0.
(N /d=1.3).

grid (seen from the generator). The angle ¥, should be
counted negative when the corresponding direction is to
the same side of the normal to the grid as the direction
of propagation of the incident wave, positive when it is
to the opposite side.

The secondary waves propagating from the grid and
outwards will form a sequence of plane waves propagat-
ing in directions determined by the angles ..

From (1) we find

sinx[znzsine—l—n;: n=20 +1,+£2, ---. (2)

In order to obtain a real solution for ¢, to this equa-

tion we must have

A
sinf + »n ;1 <1. 3)

The number of real solutions ¥, is therefore finite. For
those values of # for which the above inequality is not
satisfied we find infinitely many solutions to (2). These
solutions, however, are all complex. It may be demon-
strated that these complex values of ¢, correspond to
waves propagating along the grid surface, but being
attenuated exponentially in the direction perpendicular
to the gird. When the wavelength relative to the grid
constant increases, more and more of the real side waves
will change to attenuated waves. A very illustrative
description of the side waves is given by MacFarlane
[4].

There will always be at least two real solutions to (2),
namely for z=0 and Yy, =6 or Yy=7—0, i.c., there will
always be a transmitted wave which continues in the
direction of the incident wave and a reflected wave with
a reflection angle equal to the angle of incidence. If it is
desired that only these two zero-order waves shall be
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present, we must have

A
— > 1 —siné.
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In optics it is exactly the side waves that are of interest
since by using a suitably designed grid we may split a
light-wave in waves corresponding to the wvarious
colors, as the angle ¢, becomes different for different
wavelengths. This was the purpose of the first practical
grids (or diffraction gratings), which were constructed
by Fraunhofer in 1823 in connection with his investiga-
tions in the field of spectral analysis.

In radio technology it is mostly the directly reflected
wave and not the side waves that is of interest, since
the grids are often used as a substitute for solid metal
plates for reflecting purposes; for example, grid con-
structions have been used as reflector surfaces in
antenna systems and in ground wire systems for an-
tennas. An experimental study of grid reflectors for an-
tennas has been made for example by Gresky [5] and
ground wire systems for antennas have been treated for
example by Abbott [6], Monteath [7] and by Knudsen
and Larsen [8].

However as the lower limit of the wavelengths used
in radio technology becomes shorter and approaches
the infrared, the diffraction pattern of grids becomes of
interest. A spectrometer for millimeter waves has for
example been described by Coates [*9], and Klein,
et al. [*10] describes how it is possible to generate milli-
meter waves by letting a magnetron oscillate with
higher harmonics and then filtering the waves with
desired wavelength by using a diffraction grid.

C. Grid Impedance, Transmission and Reflection Co-
efficients

The purpose of most of the electromagnetic investiga-
tions of grids has been to find the complete field dis-
tribution around the grid in the case of a plane incident
wave. However, some authors have found it practical to
characterize the influence of the grid upon the field ex-
clusively by a single quantity, the grid impedance, or by
the reflection and the transmission coefficients. These
quantities are of most value for the directly transmitted
and reflected wave, but they have been defined also in
the case where side waves occur.

The grid impedance has been defined in two different
ways. Wessel [11]| and Hornejiger [12] (see Section
111-B) defined their grid impedance Z,, per unit length
of wire as the ratio between the electric field strength
parallel to the wires and the current of a single wire, and
used this definition also when side waves occur. Mac-
Farlane [4] and Wait [13] (see Section III-B) cal-
culated the reflection coefficient of the grid and found
that it had the same form as the reflection coefficient for
a transmission line shunted with an impedance. Ac-
cordingly, they defined their grid impedance Z, as the
shunt impedance of the equivalent transmission line.
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The connection between the two impedances is given
by
Zy

Zud = —+2,
2 )

where Zj is the characteristic impedance of the equiv-

alent transmission line, which in the general case has
the form

Ccos ¢

- 0

Zy

cos 8 ) ©)
where {o is the characteristic impedance of free space.

The wvoltage reflection and transmission coefficients
7, and ¢, are defined as the ratio between the field
strength of the reflected and the transmitted wave to
the field strength of the incoming wave (same polariza-
tion).

The power reflection and transmission coefficients 7,
and ¢, are defined from these quantities by:

% (M
| £.]2 (8)

For z lossless grid with no side waves we have

ro=|r.

t, =

rp =1 — 1,

(9)

For some applications it is sufficient to attribute to
the grid surface an infinitely large conductivity in the
direction of the wires, and the conductivity zero in the
transverse direction. For example, this approximate
description has been used in the investigations by
Andreasen [2] and by Aagesen [3] referred to above,
and it is also used to describe a helix in a traveling-wave
tube, the helix being approximated by a tube with an
infinitely thin wall having an infinitely large con-
ductivity in the direction of the wires, and the con-
ductivity zero in the transverse direction (see for ex-
ample Chu and Jackson [14]).

However, in computations regarding ground wire
systems the simple description of the impedance is in-
sufficient. In such cases the equivalent shunt impedance
Z, has been used.

The impedance properties of the grid for electro-
magnetic waves may be utilized technically for example
for matching purposes (described for example by Jones
and Cohn [15] for a dielectric lense), for filters (for ex-
ample described by Lewis and Casey [*16]) and for
artificial dielectrics (described for example by Kap-
rielian {17]).

I1I. Tag DEVELOPMENT OF THE THEORY OF GRIDS
A. Investigations from an Early Period

As was mentioned in Section II-B Fraunhofer was the
first physicist to make use of grids. This was done in his
experiments in spectral analysis around 1823. Since the
purpose of this paper is a description of investigations
of the electromagnetic properties of grids, and since the
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literature on grids published from the time of Fraun-
hofer up to the end of the century is difficult to trace, in
what follows only references will be made to papers
published in 1889 or later, 1889 being the year when
Hertz [1]showed that grids are of interest also for waves
having a wavelength essentially larger than the wave-
length of light.

The first attempt to a quantitative explanation of
Hertz' experiments was made by J. J. Thomson [18] in
1893. He considered a plane grid of infinite extent hav-
ing a grid constant smaller than the wavelength and
with the polarization of the normally incident wave
parallel to the wires of the grid. Thomson found that at
a certain distance from the grid the intensity of the re-
flected wave is the same as in the case of reflection from
a metallic surface, but that the phase differs with a
quantity depending upon the diameter of the wires and
the grid constant.

In 1898 Lamb [19] published a paper in which he
computed the reflection and the transmission co-
efficient for the grid as well in the case when the polariza-
tion of the incident wave is parallel to the wires as in the
case when the polarization is perpendicular to the wires
(perpendicular incidence). These computations were
based on the potential and the stream functions for the
stationary field around the grid. Lamb investigated
partly a grid consisting of strips, and partly a grid con-
sisting of circular rods, the grid constant ¢ being in both
cases smaller than the wavelength A. In contradiction
to Thomson he found in accordance with later theories
and measurements that the reflection coefficient de-
pends upon the wire diameter as may be seen from the
following expression found by Lamb for the power reflec-
tion coefficient 7, for a grid consisting of circular rods
with radius a.

1) Electric vector parallel to the direction of the wires

1

¥y, = . 10
» YRR (10)

1+ <- In —

A 2ra
2) Electric vector perpendicular to the direction of

the wires
<272a2>2
Ad

Py =+ (11)

27%a®\?

(5
The last formula shows that when a<<d, the reflection
coefhicient will be very small, i.e., a wave polarized per-
pendicular to the direction of the wires passes the grid
almost uninfluenced as shown experimentally by

Hertz.

In 1906 Schaefer and Laugwitz [20] tried to verify
J. J. Thomson’s results experimentally (at this time
they were not acquainted with Lamb’s work). They
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measured and compared the phase difference occurring
in the reflection from a metal plate and in the reflection
from a grid, and they found that it did not agree at all
with Thomson’s results. Whereas Thomson had found
a pronounced dependence of the grid constant, Schaefer
and Laugwitz's experiments showed that there was
practically no dependence.

In 1907 G. H. Thomson [21] also carried out meas-
urements to check the theories of J. J. Thomson as well
as Lamb’s theories. Using a different method he ob-
tained results which agreed well with Lamb’s theory
but not with the theory of J. J. Thomson. Through
G. H. Thomson’s paper, Schaefer and Laugwitz became
aware of Lamb’s investigation, and their paper from
1906 was followed by a second paper [22]in which they
showed that their measurements, too, were in agreement
with Lamb’s theory.

The influence on the transmission through the grid by
the material of the wires in the grid was investigated
experimentally by Schaefer and Laugwitz [23] in 1907.
At this time there were no theoretical investigations.
available with which the measurements could be com-
pared, since all theories developed up until that time
were based on the assumption that the wires were per-
fectly conducting. Another assumption upon which all
theories known to that time are based is that the radius
of the wires is much smaller than the grid constant and
the wavelength. However, the smaller the radius is, the
larger is the influence of the finite conductivity of the
wires. For this reason Schaefer and Laugwitz made
measurements on grids with very thin wires of various
metals. They measured the power transmission co-
efficient for these grids and found a certain dependence
of the grid material.

At the same time as the above theories for explaining
Hertz’s grid experiments were developed and measure-
ments made, some papers on optical and acoustical
grids were published. A few of these papers will be
mentioned here.

In optics there was some interest in the influence of
grids on the polarization of light. In fact, as early as
1861 Fizeau had made experiments with polarized light
incident upon a screen with slits, and Hertz’s experi-
ments with grids revived the interest in this field. In
1911 du Bois and Rubens [24] gave a review of all inves-
tigations made in this field up until this time, and new
investigations were made by themselves. An interest was
manifested in investigating whether the light had the
same property as Hertz’s radio waves, namely, that the
effect of the grid is larger when the incident wave is po-
larized parallel to the wires than it is when the polariza-
tion is in the transverse direction. In 1910 Schaefer and
Reiche [25] called the two effects the Hertz effect and
the Dubois effect (with reference to a previous work of
du Bois), respectively, and they investigated theoret-
ically when these two effects will occur. In their compu-
tations they assumed that the wire diameter is small as
compared to the wavelength, and that the grid constant.
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is so large as compared to the wavelength that the com-
putation of the field can be made on the basis of the com-
putation of the field for a single cylinder. In a following
paper from 1911 Schaefer and Reiche [26] elaborated
on their theory, still assuming that the grid constantis
much larger than the wavelength so that the mutual
influence of the wires can be neglected in computing
the field.

In acoustics Lord Rayleigh in particular worked on
problems regarding the scattering of sound waves
around various types of bodies including grids. His in-
vestigations form the basis for Lamb’s theory of grids
from 1898.

All the viewpoints mentioned so far were united in a
very comprehensive theoretical investigation by
Ignatowsky [27] from 1914. He was the first to consider
an angle of incidence different from zero (the plane of
incidence being perpendicular to the wires) and an
arbitrary cross section as well as an arbitrary material
for the wires. Later authors have usually found Igna-
towsky's investigation too general and therefore too
difficult to interpret clearly, for which reason his
formulas have seldom been used. (However in a paper
from 1958 Meecham, ef al. [28] have made numerical
computations based directly on Ignatowsky’s formulas.)

In 1914 Arkadiew [29] made some experimental in-
vestigations of the reflection from grids consisting of
only 4 wires. Both ferromagnetic and nonferromagnetic
materials were used, but as was the case for Schaefer
and Laugwitz in 1907 no theoretical investigations were
available at that time with which to compare the ex-
perimental results.

This theory was developed in 1920 by Gans [30] and
in an appendix [31] to the first paper in 1921,
He considered grids with circular wires the radius of
which were much smaller than the grid constant, and
this again much smaller than the wavelength. In the
first paper he assumed that u,=1, but in the second
paper he found that the formulas were valid also for
i-#1. Only considering the case of perpendicular in-
cidence he investigated partly the case where the
polarization of the incident wave is transverse to the
wires, and partly the case where it is parallel to the
wires. In the last mentioned case he found the following
expression for the voltage reflection coefticient:

-1
L= 12
" 21/ d ’ (12)

1 — L;<11’1—— -+ To>
2mwa
where

» Jolk

o o 1a) (13)

' k'ul Jo'(le) .

Here Jy(kia) and Jy/ (kia) are the zero order Bessel func-
tion and its first derivative of argument (k). The
formula (12) is seen to agree with (10) calculated by
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Lamb, when 7= 0, which will be the case for perfectly
conduct ng wires,

Gans made numerical computations in the case of the
electric vector being parallel to the wires using the same
constants as were used by Schaefer and Laugwitz in
their experimental work from 1907. However, it turned
out that his results did not agree at all with the meas-
urements. In 1924 Schaefer [32] found a very simple
explanation of this fact, as he showed by repeating the
experiments that the discrepancy was due to a printing
error in the paper from 1907, where the figures for the
reflection and the transmission coefficients were
changed. After correction of this error the measurements
agreed with the theory.

Arkadiew [33] in 1924, too, compared his experi-
mental results for the nonferromagnetic wires with the
theory of Gans and found a rather good agreement. In
1926 [34] he extended Gans’s theory to include the case
of ferromagnetic wires with a complex permeability and
compared the results with his experiments from 1914.
He found that the formulas found by Gans are valid
also when the permeability of the wire material is com-
plex.

B. Recent Investigations

Since the publications of the investigations men-
tioned in the last section, the last of these being from
1926, little work seems to have been done in the theory
of grids for several years. In 1939 the problem was dealt
with again, and since the end of the Second World War
several contributions have been given to the theory of
grids.

With reference to an experimental investigation by
Esau, Ahrens and Kebbel [35], Wessel [11] made in
1939 a calculation of the transmission through a grid,
and he investigated theoretically as well as numerically
the eqaivalent grid impedance Z,, (for the definition of
this impedance see Section IT1-C). Wessel based his in-
vestigation on the method mentioned in Section I[I-A
using the current in the wires of the grid in his com-
putations. He assumed the wires to have infinite conduc-
tivity and a circular cross section the radius of which is
much smaller than the wavelength. The direction of
propagation of the incident wave was assumed to be per-
pendicular to the plane of the grid. Wessel considered
cases where the grid constant varies from being twice
the wavelength to values much smaller than the wave-
length. His numerical computations showed good agree-
ment with the corresponding experimental investiga-
tions.

For the case d <\ (no side waves) Wessel found the
following expression for the power reflection co-
efficient (Durchlédssigkeit D defined by Wessel equal
to tp):

(14

=

wl\*
1+ <~>
R,



196
where
Zw =R, — iwL
$o $o
= — - 1 —
2d A
d a 1 1))
1'_'_ Bt v ——— ) 1'-
(nszr;::l% : <d>2 Y (13)
n? — {—
l Y x J |

which for d<<\ (the sum negligible) agrees with the ex-
pression (10) given by Lamb.

For d>X>d/2 Wessel found for the equivalent grid
impedance

N
g
It

R — iwl SQO(1+
P L
ol =il

. $o d ”( 1

In -+ S —
| .

A 2mae n=2 ' /‘/ R < d >2
n — | —
l ) )

t.e., the first term in the sum has turned from an imagi-
nary value to a real value corresponding to the first
order side wave turning from an attenuated wave to a
propagating wave.

In 1946 MacFarlane [4], like Lamb [19], used a quasi-
stationary method of computation, the computation of
the transmission coefficient and the impedances in the
time dependent case being based on the stationary solu-
tion for the field around the grid. However, MacFarlane
made an extension of Lamb’s investigation in that he in-
vestigated the case where the primary wave, polarized
parallel to the wires, has an arbitrary angle of incidence.
MacFarlane found in this case the following expression
for the voltage reflection coefficient under the assump-
tion that a<<d and that the condition (4) (no side waves)
is fulfilled

2| =

oo
)

—1
Vv=wz ’
1—i2-2

Zy

(17

where Z, and Z, are the impedances defined in Section
1I-C given by

Zo = 18
’ cos § (18)
7 [1 ‘4 F(d ﬂ (19)
g — §‘o s Y N ’ 3
where F is given by
1 = d P d\ 27172
res 2 Gt ) - (3)]
d 2 d 21—1/2 2
+ [(* sin 6 — n) — <—> ] - —} . (20)
A A #

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

May

This expression is seen to agree with the one found by
Wessel, when 8 =0°. F may be regarded as a correction
term, which is negligible when d<<\. Curves of F as a
function of 8 with d/\ as a parameter are given by Mac-
Farlane.

MacFarlane [36] utilized in 1946 like Booker [37] in
1947 Babinet’s principle for further grid investiga-
tions. MacFarlane’s investigations were related to
diaphragms in transmission lines and waveguides,
whereas Booker made a general investigation of the
impedance concept.

In 1948 Hornejiger [12] extended Wessel’s investiga-
tions to include an angle of incidence different from
zero (the incident wave being polarized parallel to the
wires), and he considered any value of the ratio between
the grid constant and the wavelength.

He found for the power transmission quotient of the
direct transmitted wave

R \? wl\?
(z-1)+()
= 21)
(7)+ (%)
where R, is the real part of the grid impedance Z,,

when the inequality (4) is fulfilled (no side waves).
R., is given by

o

Ry=———" 22
2d cos @ (22)

The quantities R and wL are real and imaginary parts
of the grid impedance Z,, in the general case:

Zo =R —iwl

$o 1 $o d A
=— G|l—i—|ln—+— M|, 3)
2d[c050+ :I 1%[:n27ra+2d :l (23)

where G and I are expressions which take different
forms according to the relative value of A\/d and @
(depending on the number of real side waves). In the
case of no side waves [(4) fulfilled] G and 3 take the
values

G:

) >\ 2 —1/2
M=7 {[(n——-l—sin&) — 1}
n=1 d
A 2 —r 2 4
—|~I:<n~—sin0> —l:l —-—}.
d A

In this case the above expression for the transmission
coefficient agrees with the reflection coefficient found by
MacFarlane.

In 1949 Miles [38] investigated a grid of strips with
an arbitrary value of d/\, but only for perpendicular in-
cidence. By setting up an integral equation and solving
it by variational principles he investigated acoustic
waves as well as electromagnetic waves polarized

(24)

(25)



1962

parallel to and perpendicularly to the wires. Originally
only infinitely thin strips were considered, but later the
investigations were extended to strips of finite thick-
ness.

In 1951 Shmoys [39] formulated an integral equa-
tion for computing the scattering matrix for an infinitely
large grid, consisting of wires having an infinite conduc-
tivity and an arbitrary cross section for the case where
the plane of incidence for the incident wave is per-
pendicular to the wires, the direction of polarization of
the incident wave being perpendicular to or parallel to
the wires. In the last mentioned case he used a varia-
tional method and found an approximate expression for
the scattering matrix for a grid, the wire radius and the
grid constant of which are much smaller than the wave-
length.

In the “Waveguide Handbook” from 1951 Marcuvitz
(40| presents formulas and curve sheets for the equiv-
alent, normalized parameters for various grid con-
figurations all of which have been found by an integral
equation method. In all the cases considered here the
plane of incidence is perpendicular to the wires. The
following cases have been treated: grids of infinitely
thin strips with either the magnetic or the electric field
strength parallel to the wires, grids with a circular or a
rectangular cross section in the case where the magnetic
field strength is parallel to the wires, and grids with
elliptical, circular, and rectangular cross section in
the case where the electric field strength is parallel to
the wires.

In 1951 Grillini [*41] has published results of an ex-
perimental investigation of grids of strips.

In 1952 a new extension of Wessel's and Horne-
jiger's investigations was made by Lewis and Casey
[42] who considered the case where the wires have a
finite conductivity. They limited their investigation to
the case d <A/2, thereby excluding the possibility of
side waves, and they gave numerical results for the re-
flection and the transmission coefficients for various
values of the conductivity of the wires for the case
where the electric field strength is parallel to the wires
but where the direction of propagation of the incident
wave is arbitrary. They found that the effect of losses in
the wires is to increase the grid impedance Z,, as if the
single wire internal impedance per unit length Z, were
added in series. Lewis and Casey used the value of the
internal wire impedance given by Ramo and Whin-
nery [43]:

_k1]0(k1a)

Zi= —
2racity (kaa)

(26)
where ki =+/iwyioy, 7.€., it is assumed that ¢ >we. For
high frequencies and not too small wire radii this expres-
sion reduces to

/7_ o

Jouy 1 — 1

Z, =4 — .
/‘/ 203

(27)
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Curves of the real and imaginary part of Z, have been
calculated by Lewis and Casey.

They elaborated on the formula for Z; and the for-
mulas given by Hornejiger to find explicit expressions for
the numerical value and phase angle of the reflection
and transmission coefficient.

However, in order to compare the value of the reflec-
tion coerficient with the results found by other authors
we write down the complex reflection coefficient found
by Lewis and Casey [formula (15) in their paper ]

—1
Tz —ix,)

(28)

¥y

where 7/ is the normalized internal wire impedance

d cos @ 2d cos @
zZ;) = Z, = ——1Z, (29)
607 $o
and where
2d cos 8 d
X, = —“I:ln_~+F , (30)
A 2ra

F being the correction factor found by MacFarlane.
This expression for the reflection coefficient is seen to
agree with those found by MacFarlane and Horne-
jager, when Z,=0. It is also seen to agree with the re-
sults found by Gans, when 8 =0 and A>d(F=0) as we
have

I
Ty = 1 .
$o

(31)

Using an integral equation method Miiller [44] in
1953 investigated the diffraction around a strip grid, and
in a following paper [45] from the same year he demon-
strated how his results could be used in investigating
discontinuities in waveguides.

Extending Wessel’s, Hornejédger’s, and Lewis’ and
Casey’s investigations to include a completely arbi-
trary d.rection of incidence and polarization and omit-
ting any assumptions regarding the material of the
grid wires Wait [13] in 1955 made a very general in-
vestigazion of the diffraction through a grid with ecir-
cular wires. Wait discussed the case where the grid-
constant is much smaller than the wavelength so that no
side waves occur and he derived an expression for the
equivalent grid impedance defined on the basis of an
equivalent transmission line. Wait found the {ollowing
expression for the voltage reflection coefficient.

7o = (32)

where .Z, and Z, are the impedances defined in Section
II-C.
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Wait defines the internal wire impedance in accord-
ance with Schelkunoff [46] as

g‘l.[o(—‘ikla)

g (36)
2ral (—ika)

where Iy and I; are modified Bessel functions. This ex-
pression is equal to (26) used by Lewis and Casey, when
g1>we so that ky=+/iwma.

Whereas Lewis and Casey found that the internal wire
impedance Z, should be added in series to the grid
impedance Z,, Wait found that dZ; should be added in
series to the equivalent shunt grid impedance Z,. This
is in accordance with the relation (5).

It is seen that the term F is the same as the F found
by MacFarlane when cos ¢ =1. In fact the curves of F
as a function of 8 with d/\ as a parameter calculated by
MacFarlane may be used also to compute the value of
F found by Wait, when the parameter is put equal to
d cos ¢/

In 1955 and 1956 Yampolskii [*47], [48] published
two papers on grid theory investigating the reflection
coefficient from a wire grid when the electric vector is
parallel to the wires and perpendicular to the wires,
respectively. In the last mentioned case he found for the
voltage reflection coefficient when A>>d>>a

3r2a?

dr

y = ; 37
this expression is seen to agree with (11) found by
Lamb except for the factor 3 where Lamb found a fac-
tor 2.

In an unpublished thesis Pursley [*49] in 1956 has
described microwave and infrared light measurements
on grids consisting of wires of aluminum and brass.
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An experimental investigation of the transmission
through inclined wire gratings including some simplified
theoretical considerations was given by Snow [50] in
1956, the main emphasis, however, being on the side
wave pattern.

By using a variational method Primich [51] in 1957
computed the field around a grid of strips with a per-
pendicularly incident primary wave and for arbitrary
values of d/N\. He compared his results with correspond-
ing measurements and found a reasonable agreement.

A semi-infinite grid has been investigated by Fel'd
[*52] (1958), who found that the difference between
the field in the case of the infinite grid and in the case
of the semi-infinite grid is vanishing except around the
first four conductors of the grid.

As was mentioned above on the basis of Ignatowsky’s
theory, Meesham, et al., [28] in 1958 made numerical
computations of the transmission through a grid with
d/A>1 for a perpendicularly incident wave as well in
the case where the polarization is parallel to as where it
is perpendicular to the wires. The computations have
been made on the basis of rather complicated series ex-
pressions; for this reason only a limited number of nu-
merical results have been obtained. These results have
been compared with Pursley’s experimental results, and
a reasonable agreement was observed.

In a thesis [53] from 1958 and later in a paper [54]
Hansen has used an integral equation method for dealing
with the problem of the diffraction of a plane, per-
pendicularly incident wave through a finite number of
infinitely long slits in an infinitely large screen. He
gives numerical results for the transmission coefhcient
in the case where a plane wave polarized in the direction
perpendicular to the slits hits a screen with one, two,
four or six slits, and he compares these results with the
results for strip-grids with infinitely many slits or strips.

In 1959 Decker [55] published results of measure-
ments of the transmission through a grid as a function
of the angle of incidence and the {requency. The in-
cident wave was polarized parallel to the wires. Decker
compared his results with computations made on the
basis of the formulas derived by Wait.

In several papers [56 |-[58] (1959) and in a thesis [59]
(1960) Seermark has treated the problem of diffraction
around a number of strips having the same longi-
tudinal direction but being otherwise arbitrarily
oriented with respect to each other. In these investiga-
tions he uses a new extension of the addition theorem
for Mathieu functions [60]. He also considers the case
of several parallel slits in a plane screen. Numerical
computations show that when the electric field strength
is parallel to the slits, the transmission coefficient for
four slits or more does not deviate essentially from the
corresponding coefficient for a grid with infinitely many
slits (except at resonance A =d). Hansen found that this
is not the case when the electric field strength is trans-
verse to the slits.

In 1959 Skwirzynski and Thackray [61] have made
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some calculations closely related to the work by
Ignatowsky. General but involved formulas are given
for an arbitrary angle of incidence (incoming wave
polarized parallel to the wires) and approximate formu-
las suitable for numerical computations are given in
the case of normal incidence for a grid with circular
wires. These formulas are valid for d <\/4 but no re-
strictions are placed on d in the lower limit as is the
case for all the expressions for reflection coefficients, etc.,
evaluated by the authors mentioned in this section.
Numerical calculations of the transmission coefficient
for various values of wire radius and distance between
wires are given, the lower value of d being equal to
twice the wire radius. These results were compared with
experimental results by Goodall and Jackson [62]
{1959) and good agreement was obtained.

IV. SoME RECENT INVESTIGATIONS OF SPECIAL
Grips CONFIGURATIONS

A. Grids with Wires of a Special Material

1) Ferromagnetic Grids: Kozinets [*63] has in 1946
and Epelboim [*64] has in 1947 elaborated on Arka-
diew’s investigations of ferromagnetic grids.

2) Grid Wires of Two Different Materials: In 1956
Paramonov [65] investigated both theoretically and
experimentally the transmission through a grid con-
sisting of circular conducting wires uniformly coated
with a dielectric (ice); it turns out that the reflection
decreases considerably with increasing thickness of the
dielectric coating. The computed curves are in good
agreement with the experimental data.

3) Grid Wires with Lumped Elements: A new type
of grids was invented by Trentini during the Second
World War (published 1953 [66]). He inserted usual
network elements periodically along the grid wires
whereby he was able to obtain an arbitrary impedance
for an incident electromagnetic wave. The first grid of
this type was applied as an absorbing coating for metal
walls in the meter wave range. Later such grids have
found application, for example: as matching elements,
in filters, and in electromagnetic lenses.

In 1954 Franz [67] published a theoretical investiga-
tion of an idealized model of Trentini’s absorption grid
where he considered an infinite grid consisting of very
thin wires with a uniformly distributed complex im-
pedance placed parallel to a plane sheet with infinite
conductivity. His investigation also includes the cases
where the conducting sheet is coated with an absorbing
or dielectric material.

B. Two or More Parallel Grids

The experimental work by Esau, Ahrens, and Kebbel
[35] which was carried out in connection with Wessel’s
theoretical investigations in 1939 also contained meas-
urements on several parallel grids. Franz [68] first of
all treated this case theoretically in 1949, Using a simpli-
fied form of Wessel’'s method of computation he investi-
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gated an arbitrary number of infinite grids with the
same grid constant placed parallel to each other with
parallel wires. He found the transmission coefficient
for various systems of grids as a function of the angle of
incidence, the distance between neighboring grids, and
their position relative to each other. He found a fair
agreeme 1t with Esau, Ahrens, and Kebbel’'s measure-
ments.

Lewis and Casey [*16] described in 1951 how two
parallel grids may be used as an interference filter for
microwaves.

In 1952 Groves [69 ] investigated theoretically as well
as experimentally the transmission through two par-
allel grids the wires of which form an arbitrary angle
with each other. He found the power transmission co-
efficient as a function of the distance between the grids,
the parameters of the grids, and the angle which the
grid wires form with each other. Groves limited himself
to investigating grids with a grid constant much
smaller than the wavelength and to an arbitrarily polar-
ized wave with the direction of propagation being per-
pendicular to the grids. He based his theoretical in-
vestigations on Wessel’s work, and he found good agree-
ment between measured and theoretical values.

The above mentioned investigation [66 ] from 1953 by
Trentini also describes measurements on two and three
parallel grids. In 1955 Trentini [*70] further investi-
gated the transmission through two parallel grids
theoretically as well as experimentally. He was par-
ticularly interested in investigating under what circum-
stances the power transmission was a maximum.

In 1956 Fel’d {*71] made a theoretical investigation
of the reflection from and the transmission through two
grids when the incident wave was polarized parallel to
the wires, whereas the angle of incidence was arbitrary.

In connection with work on antenna systems for
circularly or elliptically polarized waves Andreasen [2]
in 1956 investigated two parallel wire grids, the wires of
which form an aribitrary angle with respect to each
other.

Several parallel grids or lattices of parallel, cylindrical,
conducting rods are of interest for the construction of
artificial dielectrics. Twersky [72]-[75] has in several
papers from 1950-52 considered the problem of scatter-
ing of waves around an arbitrary number of parallel
cvlinders. He investigated the accuracy of Schaefer and
Reiche’s [26] method of computation from 1911 which
can be used for optical grids where the distance be-
tween the single wires is so large as compared to the
wavelength that the mutual influence can be neglected.
Twersky first extended this method by taking into ac-
count the mutual influence between neighboring cylin-
ders, and he later extended the investigation so that he
found a completely general expression for the field
around an arbitrary number of parallel cylinders of
arbitrary cross section. Sakurai [*76]in 1950 and Ka-
prieliar [17] in 1956 have investigated applications of
such systems of cylinders for artificial dielectrics.
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C. Grid Parallel to the Plane Interface Between Two
Media

In 1954 Wait [77] investigated the reflection from a
grid parallel to a conducting plane for an arbitrary angle
of incidence for the primary field. In this connection
he also considered the possibility of constructing an
absorption grid by increasing the resistance of the wires,
a problem which has been investigated by Franz [67]in
1954. As has been mentioned above also Aagesen [3]
in 1957 treated the problem of a grid parallel to a con-
ducting surface with a view to obtaining a polarization
transforming reflector.

In 1957 Wait [78]-[80] treated in three papers the
grid problem which is of greatest interest for the theory
of ground wire systems, namely the computation of the
field around a grid placed parallel to the interface be-
tween two dielectric media. Wait shows that under cer-
tain circumstances the two media and the grid may be
considered equivalent to a composite transmission line
being shunted with a certain impedance defined as the
equivalent grid impedance. This description is valid for
1) oblique incidence, when the electric vector is always
parallel to the wires, 2) normal incidence for any
polarization, 3) perfectly reflecting interface for any
angle of incidence and polarization, and 4) oblique in-
cidence, when the magnetic vector is always perpen-
dicular to the wires. Wait's impedance formulas for the
grid have been derived for a grid placed in front of the
interface between the two media, but through a simple
interchange of symbols his formulas can also be used in
the case most often met with in the investigation of
ground wire systems, a grid buried in the ground and
parallel to the surface of the ground. A numerical in-
vestigation of Wait’s formulas has been made by Larsen
[81] in 1960.

A special configuration of a grid placed parallel to the
interface between two media is a grid situated inside a
dielectric slab, which for the case of a normally incident
plane wave was investigated by Yampol'skii [*82] in
1938.

Sivov [83] has in 1961 made an investigation of a
grid with different dielectric materials on either side of
the plane of the grid. Both circular and rectangular
cross sections of the wires were treated, the magnetic
field strength being parallel to the wires.

V. CONCLUSION

A review has been given of the literature pertaining
to the electrical properties of wire grids. A great many
papers have been written on this subject most of them
investigating the case of a plane wave propagating to-
wards a plane grid consisting of an infinite number of
equal, equidistant and parallel wires. Most papers deal
with grids with wires of circular cross section, but also a
number of papers describing strip grids have appeared
and a few concerning grids with wires of arbitrary cross
section,

Various special grid configurations have been treated
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in the literature too, for example, ferromagnetic wire
grids, dielectric coated wire grids, grids with lumped-
element wires, more parallel grids with parallel wires
and with crossed wires, and grids parallel to conducting
and dielectric interfaces.

Papers with the main emphasis on the scattered side
waves have not been included in this survey.
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